Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes.
نویسندگان
چکیده
During inflammation, overproduction of nitric oxide (NO) can damage chondrocytes. In this study, we separately evaluated the toxic effects of exogenous and endogenous NO on human chondrocytes and their possible mechanisms. Human chondrocytes were exposed to sodium nitroprusside (SNP), an NO donor, or a combination of lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) as the exogenous and endogenous sources of NO, respectively. Administration of SNP or a combination of LPS and IFN-gamma in human chondrocytes increased cellular NO levels but decreased cell viability. Exposure to exogenous or endogenous NO significantly induced apoptosis of human chondrocytes. When treated with exogenous or endogenous NO, the mitochondrial membrane potential time-dependently decreased. Exposure to exogenous or endogenous NO significantly enhanced cellular reactive oxygen species (ROS) and cytochrome c (Cyt c) levels. Administration of exogenous or endogenous NO increased caspase-3 activity and consequently induced DNA fragmentation. Suppression of caspase-3 activation by Z-DEVD-FMK decreased NO-induced DNA fragmentation and cell apoptosis. Similar to SNP, exposure of human chondrocytes to S-nitrosoglutathione (GSNO), another NO donor, caused significant increases in Cyt c levels, caspase-3 activity, and DNA fragmentation, and induced cell apoptosis. Pretreatment with N-monomethyl arginine (NMMA), an inhibitor of NO synthase, significantly decreased cellular NO levels, and lowered endogenous NO-induced alterations in cellular Cyt c amounts, caspase-3 activity, DNA fragmentation, and cell apoptosis. Results of this study show that NO from exogenous and endogenous sources can induce apoptotic insults to human chondrocytes via a mitochondria-dependent mechanism.
منابع مشابه
Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress
Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary ...
متن کاملEffects of endogenous production and exogenous administration of H2S on gastric acid secretion in rats
Introduction: Recently, hydrogen sulfide has been introduced as the third gas that acts as a transmitter. It has many physiological and pharmacological roles in the human body. The aim of the present study was to investigate the effect of exogenously administered and endogenously produced H2S on the basal and distention-induced gastric acid secretion in rats. Methods: Forty-nine male Wistar...
متن کاملNitric oxide ameliorates salinity tolerance in Pyrodwarf pear (Pyrus communis) rootstocks by regulating polyamine content
Nitric oxide (NO), an endogenous signaling molecule, is involved in various physiological processes and stress responses in plants. In the present research, Pyrodwarf pear (Pyrus communis) rootstocks were grown by nutrient solution to investigate the effects of sodium nitroprusside (SNP) application as an NO donor at 0, 0.1, 0.5, and 1 mM levels on plant stress tolerance, content of ma...
متن کاملNitric oxide functions in the heart
Nitric oxide (NO) is an important organizer of the cardiovascular function and is an important mechanism in hampering the pathogenesis of the diseased heart. The scenario of bioavailable NO in the myocardium is complicated: 1) NO obtain from both endogenous and exogenous NO synthases (NOSs) and the number of NO from exogenous sources varies considerably. 2) NOSs are located at separated regions...
متن کاملTNF-α induced endothelial MAdCAM-1 expression is regulated by exogenous, not endogenous nitric oxide
BACKGROUND MAdCAM-1 is an adhesion molecule expressed in Peyer's patches and lymphoid tissues which is mobilized by cytokines like TNF-alpha and is a major determinant of lymphocyte trafficking to the gut in human inflammatory bowel disease (IBD). It has been suggested that both reactive oxygen and nitrogen metabolites participate in regulating adhesion molecule expression in response to TNF-al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular biochemistry
دوره 101 6 شماره
صفحات -
تاریخ انتشار 2007